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We develop the general equation for the nonequilibrium reversible-irreversible coupling �GENERIC� frame-
work of nonequilibrium thermodynamics for open systems. A clear distinction between bulk and boundary
contributions to the Poisson and dissipative brackets employed to generate reversible and irreversible contri-
butions to time evolution from energy and entropy allows us to formulate the bulk equations as well as the
exchange and interaction with the environment directly. The full brackets keep all the structure and hence the
predictive power of the original GENERIC for isolated systems. The straightforward procedure is illustrated
for hydrodynamics of open systems. Boltzmann’s kinetic equation is discussed as a further example. In the
Appendix, the thermodynamic treatment of surface excess variables at walls and their role in boundary con-
ditions for the bulk variables is exemplified for a diffusion cell.
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I. INTRODUCTION

The two-generator framework of nonequilibrium thermo-
dynamics, in which the energy generates the reversible con-
tribution to time evolution by means of a Poisson bracket
and the entropy generates the irreversible contribution by a
dissipative bracket �general equation for the nonequilibrium
reversible-irreversible coupling �GENERIC��, was up to now
developed only for isolated systems �1,2�. If one is interested
in the bulk equations only, it has been argued on p. 8 of a
recent textbook �3� that this is usually not a serious limita-
tion: “Because we often deal with local field theories, the
governing equations for which are independent of the bound-
ary conditions, we should clearly be able to learn something
about the thermodynamic admissibility of such evolution
equations without paying any attention to the boundary con-
ditions. For example, the field equations of hydrodynamics
can be formulated without worrying about boundary condi-
tions so that the difference between driven and isolated sys-
tems should not be important.” If, however, one is explicitly
interested in boundary effects or externally driven systems,
the GENERIC framework must be extended. For a complete
check of thermodynamic consistency, one should not just
look at the evolution equations in the bulk, but also at the
supplementing boundary conditions. The ultimate goal is a
framework of coupled bulk and surface thermodynamics, an-
chored in statistical mechanics. Boundary conditions should
arise naturally from physical insight and thermodynamic
consistency, rather than by mathematical considerations and
formal requirements.

The idea to develop boundary thermodynamics, which
goes back to Waldmann �4�, is supported by the fact that
boundary conditions depend on the level of description cho-
sen to represent the bulk properties of interest, and they are,
hence, not unambiguous conditions at the boundary. This
crucial difference between boundary conditions and condi-
tions at the boundaries has been strongly emphasized in an

inspiring paper by Brenner and Ganesan �5�. While the con-
ditions existing at the boundary can be studied in any desired
detail by laboratory or computer experiments, boundary con-
ditions change their nature with the level of description, or
with the coarse graining, and are, hence, intrinsically thermo-
dynamic concepts. These abstract words are illustrated in the
Appendix and in �5�. From a statistical mechanics perspec-
tive, a remarkable attempt to put boundary conditions for
hydrodynamic equations on an equal footing with bulk trans-
port processes has been made by Bocquet and Barrat �6�.

Thermodynamic concepts are of key importance for the
description of phenomena at surfaces and interfaces. In stan-
dard textbooks �see, for example, �7,8��, a surface contribu-
tion to the free energy appears to introduce surface tension
and capillarity. A beyond-equilibrium thermodynamic frame-
work for coupled bulk and interface phenomena will provide
a backbone to the discussion of a variety of dynamic phe-
nomena at surfaces and interfaces presented also in the
above-mentioned textbooks, such as adsorption and/or de-
sorption kinetics, spreading processes and spreading rates,
evaporation rates, kinetics of nucleation, crystal growth, re-
actions in monolayers, and surface rheology of monolayers.
For the special case of linear irreversible thermodynamics,
the role of thermodynamics in describing interface transport
processes and in providing boundary conditions for the bulk
equations has been recognized early �4� and elaborated upon
in detail �9–11�.

In this paper, we offer a generalization of the GENERIC
framework to open systems and we illustrate the abstract
ideas for the example of hydrodynamics. As a further ex-
ample, Boltzmann’s kinetic equation is discussed briefly.
Moreover, we explore the incorporation of surface excess
variables for the example of a diffusion cell. Whereas at-
tempts to generalize the GENERIC to driven systems by
adding external, controllable, and observable variables
within the framework of Dirac structures �12�, and the com-
parison to the matrix model for driven systems �13,14� were
made previously, we here focus on the boundary contribu-
tions to brackets for an unaltered list of variables in the spirit
of Stokes-Dirac structures �15�.*Electronic address: hco@mat.ethz.ch
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II. BULK AND BOUNDARY CONTRIBUTIONS

As a reminder, within the GENERIC framework, the evo-
lution of an arbitrary observable A is generated by the total
system energy E and the entropy S according to

dA

dt
= �A,E� + �A,S� , �1�

where abstract Poisson and dissipative bracket structures,
�· , · � and �· , · �, need to be introduced to generate reversible
and irreversible contributions to the time evolution. These
brackets possess a rich structure �see Sec. 1.2.1 of �3��,
which expresses the predictive power of the GENERIC. In
verifying the structure, boundary terms have always been
neglected in a previous work. In the presence of boundary
effects, Eq. �1� needs to be reconsidered carefully. In particu-
lar, we will realize how one should split the Poisson and
dissipative brackets of the GENERIC into bulk and boundary
contributions.

The bulk and boundary contributions to the brackets to be
introduced below do not inherit the symmetry properties of
the full brackets, and the bulk Poisson bracket does not pos-
sess the time-structure invariance property. It turns out that
the full thermodynamic structure can only be recognized in
the sum of the bulk and boundary contributions, which im-
plies a strong coupling of bulk and boundary thermodynam-
ics. Once the full Poisson and dissipative brackets are formu-
lated, the formulation of bulk and boundary operators and
the rest of the following construction are determined by
straightforward recipes.

A. Poisson brackets

The Poisson brackets used to generate a reversible time
evolution from an energy in the GENERIC �3� are character-
ized by the antisymmetry property

�A,B� = − �B,A� , �2�

the product or Leibniz rule

�AB,C� = A�B,C� + B�A,C� , �3�

and the Jacobi identity

ˆA,�B,C�‰ + ˆB,�C,A�‰ + ˆC,�A,B�‰ = 0, �4�

where A, B, and C are arbitrary sufficiently regular real-
valued functions or observables on a space of independent
variables for a nonequilibrium system. These properties are
well known from the Poisson brackets of classical mechan-
ics, and they capture the essence of the mechanistically con-
trolled reversible dynamics of physical observables, as deter-
mined by the first term on the right-hand side of Eq. �1�.

For a system confined to a time-independent volume V
with boundary �V, we next wish to split the full Poisson
bracket with the properties �2�–�4� into bulk and boundary
contributions,

�A,B� = �A,B�bulk + �A,B�boundary. �5�

We assume that the independent variables are functions of
position, x=x�r� for r�V, and so are the functional deriva-

tives �A /�x�r�. Fields as variables, together with local rela-
tionships between physical quantities, are clearly essential
for a meaningful distinction between bulk and boundary ef-
fects. The bulk contribution to the Poisson bracket is ex-
pressed in the form

�A,B�bulk = � �A

�x
, L ·

�B

�x
� , �6�

where L is a linear differential operator and the standard
scalar product between vector-valued functions f and g on V
is used

	f,g
 = �
V

f�r� · g�r�d3r . �7�

The motivation for writing bulk Poisson operators in the
form �6� is given by the fact that it can be considered as a
chain rule. The first factor in the scalar product expresses
variations of the functional A due to changes in the fields x,
and the second factor expresses changes of x, for example,
with time. In general, the scalar product in Eq. �6� must
hence be the same as the one employed in the definition of
functional derivatives. In particular, the reversible contribu-
tion to the bulk time-evolution equations for the independent
variables implied by Eq. �1� can now immediately be recog-
nized as

�dx

dt


rev
= L ·

�E

�x
. �8�

This observation is essential for the construction of Stokes-
Dirac structures in �15�, which couple bulk and boundary
terms in a more general and abstract setting.

To investigate the symmetry properties of the bulk bracket
in Eq. �6�, we need to construct the adjoint of the operator L
for the standard scalar product. Because the linear operator L
is typically a first-order differential operator, the calculation
of its adjoint involves integrations by parts, which leaves us
with boundary terms spoiling the symmetry properties of the
bulk bracket. These extra terms need to be incorporated into
the boundary contribution to the Poisson bracket. We assume
that the boundary Poisson bracket possesses the same gen-
eral structure as the bulk Poisson bracket

�A,B�boundary = �
�V

�A

�x�r�
· L��r� ·

�B

�x�r�
d2r , �9�

where the integration is over two-dimensional surface ele-
ments, and the boundary Poisson operator L��r� accounts for
the reversible exchange and interaction with the environ-
ment. The explicit forms of the bulk and boundary Poisson
operators L and L� are obtained by rearranging a given Pois-
son bracket through integrations by parts. Usually, L is a
first-order differential operator, so that L� is a matrix with
regular functions as entries. Only the Poisson operator L as-
sociated with the bulk contribution to �A ,B� was considered
in previous work for isolated systems because boundary
terms were considered to be irrelevant.

Whereas the antisymmetry �2� and the Jacobi identity �4�
are not inherited by the bulk and boundary contributions to
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the Poisson bracket, the definitions �6� and �9� of these
bracket contributions in terms of functional derivatives imply
the product or the Leibniz rule �3� for the individual contri-
butions. The definitions �6� and �9� moreover imply that the
invariance of the full Poisson bracket under changes of the
independent variables is inherited by the individual contribu-
tions, with a corresponding natural transformation behavior
of the operators L and L�.

An important further property of the Poisson bracket is
the degeneracy of the total system entropy S, which is used
to generate irreversible dynamics. It expresses the character-
istic of entropy that it cannot be affected by any reversible
dynamics. From many examples we know that, in the no-
menclature of the present paper, this degeneracy is a property
of the bulk contribution to the Poisson bracket that can be
expressed as

L ·
�S

�x
= 0. �10�

Note that there can be a reversible flux of entropy at the
boundary so that we do not necessarily assume that a degen-
eracy requirement holds also for the boundary Poisson op-
erator. Therefore, the entropy need not be a degenerate ob-
servable for the full Poisson bracket due to flow effects at the
boundary. The full Poisson bracket, which possesses all the
GENERIC structure, is equivalent to the pair �L ,L�� of bulk
and boundary Poisson operators.

B. Dissipative brackets

Dissipative brackets are used to construct the irreversible
contribution to time evolution from the gradient of entropy
according to the second term on the right-hand side of Eq.
�1�. They are characterized by the symmetry condition �for a
more sophisticated discussion of symmetry properties of dis-
sipative brackets see Sec. 3.2.1 of �3��

�A,B� = �B,A� , �11�

the product or the Leibniz rule

�AB,C� = A�B,C� + B�A,C� , �12�

and the non-negativeness condition

�A,A� � 0, �13�

where A, B, and C are arbitrary sufficiently regular real-
valued functions on the space of independent variables for a
nonequilibrium system.

With the same motivation as Poisson brackets, dissipative
brackets can also be split into bulk and boundary contribu-
tions

�A,B� = �A,B�bulk + �A,B�boundary. �14�

The bulk contribution to the dissipative bracket is written as

�A,B�bulk = � �A

�x
, M ·

�B

�x
� , �15�

where M is a linear differential operator, sometimes referred
to as a �bulk� friction operator.

To investigate the symmetry properties of the bulk bracket
in Eq. �15�, we need to construct the adjoint of the friction
operator M for the standard scalar product. Because the lin-
ear operator M is typically a differential operator, calculation
of its adjoint involves integrations by parts, so that M is not
self-adjoint and �A ,B�bulk is not symmetric because we are
left with boundary terms. These terms need to be incorpo-
rated into the boundary contribution to the dissipative
bracket, for which we assume the by now familiar structure

�A,B�boundary = �
�V

�A

�x�r�
· M��r� ·

�B

�x�r�
d2r , �16�

where the boundary friction operator M��r� accounts for a
irreversible exchange and interaction with the environment.
For transport processes, the bulk friction operator M is a
second-order differential operator, so that the boundary fric-
tion operator M� is a first-order differential operator �because
the rearrangement of the dissipative bracket in the form of
Eq. �14� with the contributions �15� and �16� again involves
integrations by parts�.

As a generalization of Eq. �8�, the complete bulk time-
evolution equations for the independent variables can now be
written as

dx

dt
= L ·

�E

�x
+ M ·

�S

�x
. �17�

Whereas the symmetry �11� is not inherited by the bulk and
boundary contributions to the Poisson bracket, the definitions
�15� and �16� in terms of functional derivatives imply the
product or Leibniz rule �12� for the individual contributions.
The definitions �15� and �16� moreover imply that the invari-
ance of the full dissipative bracket under changes of the in-
dependent variables is inherited by the individual contribu-
tions, with a corresponding natural transformation behavior
of the operators M and M�.

The conservation of energy under irreversible dynamics is
expressed by a well-established identity for the bulk friction
operator

M ·
�E

�x
= 0. �18�

In view of the possibility of an irreversible flux of energy at
the boundary, we do not necessarily expect that a similar
degeneracy requirement holds also for the boundary friction
operator.

The full dissipative bracket is equivalent to the pair
�M ,M�� of bulk and boundary dissipative operators. Only the
bulk operators L and M occur in the time-evolution equa-
tions and have been considered in a previous work for iso-
lated systems; the operators L� and M� are related to the
boundary conditions.
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C. Conservation laws

To construct the time-evolution equations �17�, we need
only the bulk Poisson and friction operators L and M. By
studying total balance equations, in a next step, we recognize
the physical significance of the boundary Poisson and fric-
tion operators L� and M� accounting for exchange and inter-
action with the environment. Moreover, the significance of
the full dissipative bracket is highlighted by looking at the
total entropy production rate.

The rate of change of any observable A, which is a func-
tional of the independent variables x in the volume V, is
given by the scalar product of its functional derivative with
the time derivative of x in Eq. �17�, so that we have

dA

dt
= �A,E�bulk + �A,S�bulk. �19�

This time-evolution equation, which is the proper interpreta-
tion of Eq. �1� when attention is paid to boundary terms, can
alternatively be expressed in terms of Poisson and dissipative
operators acting on A rather than on the generators E and S,

dA

dt
= �

V
�−

�E

�x
· L +

�S

�x
· M ·

�A

�x
d3r

+ �
�V
�−

�E

�x
· �L� + L�T� +

�S

�x
· �M� − M�T�� ·

�A

�x
d2r .

�20�

From this equation, it is clear that only the symmetric part of
L� and the antisymmetric part of M� play a role for the
boundary terms. If, for example, M� is a differential operator,
then ��S /�x�M�T is defined by

�
�V

�S

�x
· M�T ·

�A

�x
d2r = �

�V

�A

�x
· M� ·

�S

�x
d2r . �21�

In view of �E ,E�=0 and the degeneracy requirements �10�
and �18�, the rate of change of the energy E and the entropy
S can be rewritten as pure boundary terms

dE

dt
= �

�V
�−

�E

�x
· L� +

�S

�x
· �M� − M�T�� ·

�E

�x
d2r �22�

for the conserved quantity E, and as a positive-semidefinite
production term plus boundary terms for S,

dS

dt
= �S,S� + �

�V
�−

�E

�x
· �L� + L�T� −

�S

�x
· M�� ·

�S

�x
d2r .

�23�

These balance equations highlight the importance of the
boundary Poisson and friction operators and the occurrence
of the full dissipative bracket in the total entropy production.

The main result of this paper is that the full structure of
the Poisson and dissipative brackets is reflected only par-
tially in the Poisson and friction operators used in previous
applications of the GENERIC to isolated systems. These
bulk Poisson and friction operators determine the evolution
equations �17� and �19� for bulk observables. The important

extra information in the previously neglected boundary terms
can be used to define boundary Poisson and friction opera-
tors. Their physical significance is most transparent in the
boundary terms of the general evolution equation �20�.

III. EXAMPLE: HYDRODYNAMICS

For our discussion of hydrodynamics, we use the mass,
momentum, and internal energy density fields, x= �� ,M ,��,
as independent variables. We first give the total energy, en-
tropy, and their gradients for reference, and then we specify
the full Poisson and dissipative brackets to be decomposed
into bulk and boundary contributions.

A. Energy and entropy

The total energy can naturally be obtained by adding the
kinetic and internal energy densities and integrating the sum
over the entire volume of the flowing system,

E = �
V
�M2

2�
+ �d3r . �24�

By taking functional derivatives with respect to the hydrody-
namic fields we obtain

�E

�x
=�

�

��

�

�M

�

��

�E��,M,�� =�−
1

2
v2

v
1
� , �25�

where the velocity field is given by v=M /�.
The explicit expression for the entropy is

S = �
V

s��,��d3r , �26�

where the function s�� ,�� describes the equilibrium relation-
ship between the densities of mass, internal energy, and en-
tropy. Hydrodynamics is clearly based on the assumption of
local equilibrium. By taking functional derivatives with re-
spect to the hydrodynamic fields we obtain

�S

�x
=�

�

��

�

�M

�

��

�S��,�� =�−
�

T

0

1

T
� , �27�

where � is the chemical potential per unit mass and T is the
temperature of the local equilibrium system.

B. Poisson bracket

By transforming two frequently considered expressions
for the Poisson bracket of hydrodynamics see �Eqs. �2.57�
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and �2.58� of �3�� from the entropy density to the internal
energy density as an independent variable, we obtain

�A,B� = �
V
��B

��

�

�r
· � �A

�M
� −

�A

��

�

�r
· � �B

�M
��d3r

+ �
V
� �B

�M

�

�r
:� �A

�M
M −

�A

�M

�

�r
:� �B

�M
M�d3r

+ �
V
��B

��

�

�r
· � �A

�M
� −

�A

��

�

�r
· � �B

�M
��d3r

+ �
V

p��B

��

�

�r
·

�A

�M
−

�A

��

�

�r
·

�B

�M
d3r �28�

and the alternative expression

�A,B� = − �
V

�� �A

�M
·

�

�r

�B

��
−

�B

�M
·

�

�r

�A

��
d3r

− �
V

M · � �A

�M
·

�

�r

�B

�M
−

�B

�M
·

�

�r

�A

�M
d3r

− �
V

�� �A

�M
·

�

�r

�B

��
−

�B

�M
·

�

�r

�A

��
d3r

− �
V
� �A

�M
·

�

�r
��B

��
p −

�B

�M
·

�

�r
��A

��
p�d3r ,

�29�

which, after integrating each term by parts, differ only by
boundary terms. When Beris and Edwards �16� derived the
Poisson bracket for hydrodynamics from a variational prin-
ciple of classical mechanics via a Lagrangian description of
the fluid in Secs. 5.1–5.3 of their book, they arrived at the
version in Eq. �28�. The same Poisson bracket was also ob-
tained from classical mechanics by means of the projection-
operator method �17� �as can be verified by comparing the
Poisson operator found in that paper to the one in Exercise
24 of �3��. Lie-Poisson reduction based on the group of space
transformations and its natural action on scalar densities,
however, suggests the form in Eq. �29� �see Secs. 3 and 4 of
Appendix B in �3�; see also Eq. �9� of �18��. For isolated
systems, boundary terms are irrelevant and the brackets in
Eqs. �28� and �29� are equivalent. For open systems, it is
important to identify the appropriate Poisson bracket with
the correct boundary terms.

While both bracket expressions possess the defining anti-
symmetry property �2� and fulfill the Leibniz rule �3�, the
Jacobi identity �4� allows us to identify the correct form of
the Poisson bracket. On the one hand, when the Jacobi iden-
tity is checked for the bracket in Eq. �29�, no integrations by
parts are needed, and no boundary terms arise �see Sec. 2.3.1
of �3��. The bracket in Eq. �29� strictly satisfies the Jacobi
identity without any leftover boundary terms, as should ac-
tually be expected for a bracket constructed by the Lie-
Poisson reduction. On the other hand, in the same calculation
for the bracket in Eq. �28�, leftover boundary terms do occur,
for example, such as

�
�V
�M ·

�A

�M
�n ·

�B

�M
� �

�r
·

�C

�M
d2r , �30�

which, in general, cannot be canceled by terms with permu-
tations of A, B, and C. Here and in the following, n is the
outwardly directed normal unit vector on the boundary.
When the boundary conditions are such that the difference
between Eqs. �28� and �29� vanishes, then also the leftover
boundary terms in checking the Jacobi identity vanish. In
general, however, Eq. �28� does not define a valid Poisson
bracket.

We next construct the boundary Poisson operator associ-
ated with the valid full Poisson bracket �29�. By performing
the integrations by parts required to get �A /�x free of any
spatial derivatives as required by the expression �6� for the
bulk Poisson operator, we obtain

L� = �0 �n 0

0 Mn 0

0 �� + p�n 0
� , �31�

and the transposed operator

L�T = � 0 0 0

n� nM n�� + p�
0 0 0

� . �32�

Note that we find an additional degeneracy requirement
L��S /�x=0 for the boundary Poisson operator in Eq. �31�.

Only the sum of L� and L�T matters in the boundary terms
of the time-evolution equation �20�. For hydrodynamics we
find

−
�E

�x
· �L� + L�T� = − n · � v�

�vv + � 1
2�v2 + � + p�1

v�� + p�
� .

�33�

The normal component of the reversible mass flux is the
physically expected one. The other entries in Eq. �33� are not
the normal components of the proper physical fluxes of the
conserved variables because the volume integral in Eq. �20�
contains divergence terms that also contribute to the physical
fluxes through the boundary.

C. Dissipative bracket

The dissipative bracket of conventional hydrodynamics
contains contributions associated with the shear viscosity �,
the bulk or dilatational viscosity �, and the thermal conduc-
tivity �q; it is given by
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�A,B� = �
V

�T

2
� �

�r

�A

�M
+ � �

�r

�A

�M
T

− �̇
�A

��
�:� �

�r

�B

�M
+ � �

�r

�B

�M
T

− �̇
�B

��
�d3r

+ �
V

�̂T� �

�r
·

�A

�M
−

1

2
tr �̇

�A

��
�� �

�r
·

�B

�M
−

1

2
tr�̇

�B

��
�d3r + �

V

�qT2� �

�r

�A

��
� · � �

�r

�B

��
�d3r , �34�

where �̂=�−2� /3. The symmetry �11� is obvious by construction and the non-negativeness condition �13� is equivalent to
non-negative transport coefficients. With this dissipative bracket and the gradient of entropy, we find the following total
entropy production:

�S,S� = �
V
� �

2T
�̇:�̇ +

�̂

4T
�tr �̇�2 +

�q

T2� �T

�r
2�d3r . �35�

After performing the required integrations by parts, we find the degeneracy �18� of the bulk dissipative operator for the energy
gradient �25�, and the boundary friction operator is identified as

M� =�
0 0 0

0 �T�n ·
�

�r
1 + �n

�

�r
T� + �̂Tn

�

�r
− �T�̇ · n −

1

2
�̂T�tr �̇�n

0 0 �qT2n ·
�

�r
, � , �36�

which yields the separate degeneracy requirement
M��E /�x=0 for the boundary friction operator. Note that,
like the total energy, the mass and momentum of the system
are degenerate functionals of the dissipative bracket.

Only the difference of M� and M�T matters in the bound-
ary terms of the general time-evolution equation �20�. For
hydrodynamics we find

�S

�x
�M� − M�T� = − n ·�

0

− ��̇ −
1

2
�̂ tr �̇1

− �q �

�r
T � . �37�

With Eqs. �33� and �37�, the general time-evolution equa-
tion �20� leads to

dE

dt
= − �

�V

n · ��1

2
�v2 + �v + jq + �p1 + �� · v�d2r ,

�38�

and

dS

dt
= �S,S� − �

�V

1

T
n · ��� + p − ���v + jq�d2r , �39�

where the heat flux jq is given by Fourier’s law, � is New-
ton’s expression for the stress tensor, the term �+ p−�� in
Eq. �39� is given by Ts, and the total entropy production
�S ,S� is given in Eq. �35�. We thus recover the expected
energy and entropy balance equations for hydrodynamics in
open systems.

IV. EXAMPLE: BOLTZMANN’S KINETIC EQUATION

In Boltzmann’s kinetic equation, the independent variable
is the single-particle distribution function f�r ,p�, where r and
p are the position and momentum of a single particle in a
rarefied gas. We here focus on the Poisson bracket because
the dissipative bracket for Boltzmann’s kinetic equation does
not contain any spatial derivative operators. For such a
strictly local dissipative collision mechanism, the boundary
friction operator vanishes. All details on the GENERIC for-
mulation of Boltzmann’s kinetic equation can be found in
Sec. 7.2 of �3�.

A. Energy and entropy

In the absence of external forces, the total energy for a
single-particle kinetic theory is given by the kinetic energy,

E�f� = �
V

d3r� d3p
p2

2m
f�r,p� , �40�

where m is the mass of the gas particles. The functional
derivative of E�f� is obtained to be

�E�f�
�f�r,p�

=
p2

2m
. �41�

Boltzmann’s famous entropy expression is given by

S�f� = �
V

d3r� d3p s„f�r,p�…

= − kB�
V

d3r� d3p f�r,p�ln
f�r,p�

N
, �42�

where s�f� is the entropy density and N is the total number of

HANS CHRISTIAN ÖTTINGER PHYSICAL REVIEW E 73, 036126 �2006�

036126-6



gas particles. The proper functional derivative of S�f� is
given by �see Sec. 7.2.2 of �3��

�S�f�
�f�r,p�

= − kB ln
f„r,p…

N
. �43�

B. Poisson bracket

As a consequence of the fact that the single-particle dis-
tribution function f is the only variable on the level of Boltz-
mann’s equation, it is a simple exercise to verify that the
expression

�A,B� = �
V

d3r� d3pf�� �

�r

�A

�f
 · � �

�p

�B

�f


− � �

�p

�A

�f
 · � �

�r

�B

�f
� �44�

defines a valid Poisson bracket. As for the energy and en-
tropy, we have integrations over p in addition to those over r.
The corresponding bulk Poisson operator is obtained via in-
tegrations by part,

L =
�

�p
· f

�

�r
−

�

�r
· f

�

�p
. �45�

The degeneracy requirement �10� follows from Eqs. �43� and
�45� and the commutativity of partial derivatives, but the
entropy S is not a degenerate function of the full bracket.

In order to formulate the total balance equations, we
evaluate

−
�E

�x
· �L� + L�T� = n ·

p2

2m

� f

�p
. �46�

Because L� can be symmetrized in Eq. �22�, we obtain the
following energy balance after integrating by parts:

dE

dt
= − �

�V

d2rn ·� d3p
p

m

p2

2m
f . �47�

From Eq. �23�, we obtain the entropy balance

dS

dt
= �S,S� + �

�V

d2r n ·� d3p
p2

2m

� f

�p

�s�f�
� f

= �S,S� − �
�V

d2r n ·� d3p
p

m
s�f� . �48�

The reversible boundary operator in Eq. �46� allows us to
formulate the total energy and entropy balances associated
with Boltzmann’s kinetic equation in a convenient manner,

and the surface terms in the resulting equations have obvious
interpretations as kinetic energy and entropy fluxes.

V. PERSPECTIVES

The formulation of open systems by splitting the Poisson
and dissipative brackets of the GENERIC framework of non-
equilibrium thermodynamics into bulk and boundary contri-
butions should be supported by statistical mechanics. The
fact that previous attempts to derive the Poisson bracket of
hydrodynamics from the canonical bracket of classical me-
chanics did not lead to the correct boundary terms suggests
that, in the statistical approach, the boundary contributions
on the atomistic level also somehow need to be taken into
account in the coarse-graining procedure. The relationship
between boundary conditions on different levels of descrip-
tion has been investigated in the work of Bocquet and Barrat
�6,19�, which offers a guideline to formulate statistical ex-
pressions for irreversible contributions to the boundary con-
ditions based on the Green-Kubo formula and projection-
operator technique that provide the statistical foundations of
the GENERIC for bulk thermodynamics.

This paper offers a modest step toward a complete ther-
modynamic description of boundary physics beyond the re-
gime of linear irreversible thermodynamics. In the situation
considered here, the boundary contributions to the Poisson
and dissipative brackets depend only on the bulk variables
�and their derivatives� evaluated at the boundaries. In gen-
eral, there will be additional variables at the boundaries, typi-
cally excess variables accounting for deviations from the
bulk behavior near a boundary in a coarse-grained manner
�as already introduced in Gibbs’s pioneering work on inter-
faces; see, for example, Sec. III-5 of �8� or Sec. 3.6 of �20��.
For example, momentum excess occurs for the slip of a fluid
at a solid wall. An example with excess particles near the
wall is discussed in the Appendix. For time-dependent
boundaries, intrinsic or geometric characteristics of the
boundaries may also necessitate additional boundary vari-
ables. Free boundaries often involve time dependence, and
the example of sedimentation of a stabilized emulsion drop-
let with an inhomogeneous distribution of surfactant �see Ex-
ample 5.6.1 of �20��, maybe even with viscoelastic interfacial
rheological behavior, illustrates the richness of the interface
phenomena for which a fully thermodynamic description is
sought. All the boundary conditions required mathematically
to obtain unique solutions of the bulk equations should arise
naturally from a deeply rooted framework of boundary ther-
modynamics. This vision is substantiated by a simple ex-
ample in the Appendix. The development of the general
framework should be guided by linear irreversible thermody-
namics, for which interfaces and boundary conditions have
been discussed in great detail in several classical papers
�4,9,10�. The generalization will be useful not only to de-
scribe highly nonlinear coupled bulk and interface transport
processes, but also for including interfacial relaxation pro-
cesses. If we go beyond transport processes, the structure is
no longer provided by the form of local balance equations, so
that there is a clear need for a general framework determin-
ing the structure of time-evolution equations.
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APPENDIX: EXAMPLE OF A DIFFUSION CELL

In this Appendix, we consider the three-dimensional ver-
sion of a diffusion cell previously studied by Brenner and
Ganesan �5�. A cubic diffusion cell of volume V �see Fig. 1�
is filled with a dilute suspension of Brownian particles. The
low solute particle number density in the bulk is given by
P�r�. Two opposite sides of the diffusion cell are in contact
with reservoirs maintaining concentrations P1 and P2 at these
open boundaries of the cell. The other four sides are bounded
by solid walls �W�, at which there exists a surface excess
area solute particle number density, p�r�.

As we wish to describe purely isothermal diffusion of the
Brownian particles in the cell filled with a quiescent viscous
liquid and in the excess layers at the walls, we choose the
GENERIC building blocks describing reversible dynamics to
be zero, E=0 and L=0. For the entropy, we assume a sum of
Boltzmann-type bulk and boundary contributions,

S = − kB�
V

P�r�ln P�r�d3r − kB�
W

p�r�ln p�r�d2r ,

�A1�

and the derivatives of the entropy are thus given by

�S

�P
= − kB ln

P

P0
, �A2�

�S

�p
= − kB ln

p

p0
. �A3�

The constants P0 and p0, which are associated with normal-
ization constraints of P and p in forming the functional de-
rivatives, characterize the uniform distributions toward those
P and p are driven by the entropy gradient.

Finally, the dissipative bracket includes three different ir-
reversible mechanisms, namely, bulk diffusion, surface dif-
fusion, and particle exchange between the bulk and the part
of the surface bounded by walls,

�A,B� =
1

kB
�

V

D	� �

�r

�A

�P�r�� · � �

�r

�B

�P�r��P�r�d3r

+
1

kB
�

W

Ds� �

�r

�A

�p�r�� · � �

�r

�B

�p�r��p�r�d2r

+
1

kB
�

W


s� �A

�p�r�
− �

�A

�P�r�
�� �B

�p�r�
− �

�B

�P�r�p�r�d2r . �A4�

In this bracket expression, D	 is the bulk diffusivity, Ds is
the surface diffusivity, and 
s is the rate at which adsorption
to or desorption from the wall takes place �depending on the
chemical potentials at the boundary and in the bulk�. The
factor � specifies the relationship between the surface excess
variable and the bulk variable. In our simple example, where
all particles moving from the bulk into a layer near the wall
appear in the surface excess density, we have �=1. We keep
� as a reminder that, in general, one needs to establish a
relationship between bulk and boundary variables, and that
their dynamic coupling by dissipative processes contributes
to the entropy production. All gradients � /�r of surface vari-
ables are understood as tangential derivatives along the sur-
face.

In order to formulate the time-evolution equations implied
by the above building blocks E, S, L, and the dissipative
bracket �A4� for the bulk and surface excess variables, we
rewrite the dissipative bracket as motivated above. The bulk
contribution to the bracket involves only bulk variables

�A,B�bulk = � �A

�P
,M

�B

�P
� , �A5�

where M is the diffusion operator

M = −
1

kB

�

�r
· D	P

�

�r
. �A6�

For the boundary contribution we obtain after some integra-
tions by parts and a splitting of the bulk-surface exchange
term

�A,B�boundary = �
�V

�A

�P�r�
M1

��r�
�B

�P�r�
d2r

+ �
W

�A

�p�r�
M2

��r�
�B

�p�r�
d2r

− �
W

�A

�P�r�
�TMB

� �r�d2r + �
W

�A

�p�r�
MB

� �r�d2r ,

�A7�

with

M1
� =

1

kB
D	Pn ·

�

�r
, �A8�

M2
� = −

1

kB

�

�r
· Dsp

�

�r
, �A9�

FIG. 1. Diffusion cell.
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MB
� =


s

kB
��B

�p
− �

�B

�P
p . �A10�

Note that, in the construction of M2
�, we have neglected con-

tributions from the edges of the diffusion cell. Treatment of
these would require a lower-dimensional generalization of
the present ideas, which seems to be a straightforward step
�see also Chap. 18 of �20��.

As before, we identify the time-evolution equations for
the bulk and boundary variables by the chain rule for the
evolution of a general quantity A. In the bulk, we obtain the
diffusion equation

dP

dt
= M

�S

�P
=

�

�r
· D	

�P

�r
. �A11�

For the open boundaries in contact with the reservoirs,

M1
� �S

�P
= n · �− D	

�P

�r
 �A12�

gives the normal component of the particle flow through the
surface of the diffusion cell. At the solid walls, there is no
loss of particles, and an arbitrary quantity A can change only
through changes of the surface excess variable p so that, by
careful inspection of Eq. �A7� for B=S, we obtain the two
requirements

M1
� �S

�P
= �TMS

� �A13�

and

dp

dt
= M2

� �S

�p
+ MS

� , �A14�

where �T=�=1. In spite of these identities, we have kept
the explicit factors of � and �T to emphasize the two-way
nature of the coupling between bulk and surface excess vari-
ables. The factor �T in Eq. �A13� characterizes the influence
of the surface excess variables on the boundary conditions
for the bulk variables, whereas the factor � contained in MS

�

in Eq. �A14� describes the influence of the bulk behavior
near the wall on the evolution of the surface excess variables.

The more explicit versions of Eqs. �A13� and �A14� for
our diffusion cell are

n · �− D	

�P

�r
 = 
sp ln

Pp0

pP0
= 
sp ln

HP

p
�A15�

with a characteristic length scale or boundary layer thickness
H= p0 / P0 �see Sec. III A of �5��, and the surface transport
equation

dp

dt
=

�

�r
· Ds

�p

�r
+ n · �− D	

�P

�r
 . �A16�

The coupled set of equations �A15� and �A16� determine the
surface excess variable p and the boundary condition to the
bulk variable P. This situation is more general than the one
discussed in Sec. III D of �5� because we introduced a dissi-
pative bracket contribution associated with the particle ex-
change between the bulk and the surface. This contribution is
crucial for a full understanding of active transport in living
cells �21�. Only if the exchange between the bulk and the
surface happens very fast, the exchange term proportional to

s in the bracket �A4� can be neglected to obtain the results
of �5�. The chemical potentials at the wall and in the bulk
near the wall are then equalized for all times

�S

�p
− �

�S

�P
= 0 or p = HP . �A17�

The condition p=HP was used in Sec. III D of �5� together
with the surface transport equation �A16� to fix the surface
excess density and the boundary conditions. Equation �A15�
then implies a vanishing normal flux to the wall, which is
appropriate for the steady-state solution considered in detail
in �5�, but not for the suggested time-dependent generaliza-
tions. All the rich boundary physics of this diffusion cell is
contained in the GENERIC building blocks.

A flavor of the statistical mechanics of the surface layer
properties of the diffusion cell can be gained from the work
of Brenner and Ganesan �5�. In that paper, the careful intro-
duction of surface excess variables is based on a singular
perturbation approach; the boundary layer thickness H is
given in terms of the potential energy profile near the wall,
and also an atomistic expression for the surface diffusivity is
offered �see Eq. �78� of �5��. A thermodynamically consistent
macroscopic description of polymer molecules near walls
based on microscopic polymer models, including a calcula-
tion of slip coefficients, has been offered by Mavrantzas and
Beris �22–24�.
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